30 research outputs found

    Whole Transcriptome Sequencing Reveals Gene Expression and Splicing Differences in Brain Regions Affected by Alzheimer's Disease

    Get PDF
    Recent studies strongly indicate that aberrations in the control of gene expression might contribute to the initiation and progression of Alzheimer's disease (AD). In particular, alternative splicing has been suggested to play a role in spontaneous cases of AD. Previous transcriptome profiling of AD models and patient samples using microarrays delivered conflicting results. This study provides, for the first time, transcriptomic analysis for distinct regions of the AD brain using RNA-Seq next-generation sequencing technology. Illumina RNA-Seq analysis was used to survey transcriptome profiles from total brain, frontal and temporal lobe of healthy and AD post-mortem tissue. We quantified gene expression levels, splicing isoforms and alternative transcript start sites. Gene Ontology term enrichment analysis revealed an overrepresentation of genes associated with a neuron's cytological structure and synapse function in AD brain samples. Analysis of the temporal lobe with the Cufflinks tool revealed that transcriptional isoforms of the apolipoprotein E gene, APOE-001, -002 and -005, are under the control of different promoters in normal and AD brain tissue. We also observed differing expression levels of APOE-001 and -002 splice variants in the AD temporal lobe. Our results indicate that alternative splicing and promoter usage of the APOE gene in AD brain tissue might reflect the progression of neurodegeneration

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe

    Significant benefits of AIP testing and clinical screening in familial isolated and young-onset pituitary tumors

    Get PDF
    Context Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene are responsible for a subset of familial isolated pituitary adenoma (FIPA) cases and sporadic pituitary neuroendocrine tumors (PitNETs). Objective To compare prospectively diagnosed AIP mutation-positive (AIPmut) PitNET patients with clinically presenting patients and to compare the clinical characteristics of AIPmut and AIPneg PitNET patients. Design 12-year prospective, observational study. Participants & Setting We studied probands and family members of FIPA kindreds and sporadic patients with disease onset ≤18 years or macroadenomas with onset ≤30 years (n = 1477). This was a collaborative study conducted at referral centers for pituitary diseases. Interventions & Outcome AIP testing and clinical screening for pituitary disease. Comparison of characteristics of prospectively diagnosed (n = 22) vs clinically presenting AIPmut PitNET patients (n = 145), and AIPmut (n = 167) vs AIPneg PitNET patients (n = 1310). Results Prospectively diagnosed AIPmut PitNET patients had smaller lesions with less suprasellar extension or cavernous sinus invasion and required fewer treatments with fewer operations and no radiotherapy compared with clinically presenting cases; there were fewer cases with active disease and hypopituitarism at last follow-up. When comparing AIPmut and AIPneg cases, AIPmut patients were more often males, younger, more often had GH excess, pituitary apoplexy, suprasellar extension, and more patients required multimodal therapy, including radiotherapy. AIPmut patients (n = 136) with GH excess were taller than AIPneg counterparts (n = 650). Conclusions Prospectively diagnosed AIPmut patients show better outcomes than clinically presenting cases, demonstrating the benefits of genetic and clinical screening. AIP-related pituitary disease has a wide spectrum ranging from aggressively growing lesions to stable or indolent disease course

    Applying a risk governance approach to examine how professionals perceive the benefits and risks of clinical genomics in Australian healthcare

    No full text
    Clinical genomics is a system of multiple stakeholders and institutions. Yet, studies focusing on the comparative perspectives of these stakeholders are limited. This study engages four groups of professionals (clinical geneticists, genetic counselors, laboratory professionals, and researchers) working in clinical genomics to investigate their perceptions of the benefits and risks of using genomics in Australian healthcare. The study is underpinned by a risk governance approach. For data collection, qualitative semi-structured interviews were used. Our results show that all professionals unanimously identified that the benefit of clinical genomics lies in improving health outcomes for patients. However, the risks associated with delivering this benefit differed by professional category. We found that the further the profession was from the patient (e.g. researcher) the narrower the perceived risks were amongst the individuals interviewed. However, “privacy” as a perceived risk was ranked highly by all professions indicating a shared desire for responsible data governance practices

    Sequencing of hippocampal and cerebellar transcriptomes provides new insights into the complexity of gene regulation in the human brain

    No full text
    The hippocampus and cerebellum represent anatomically and functionally distinct parts of the human brain. The RNA-Seq technique makes it possible to investigate the human transcriptome with unprecedented resolution, allowing identification of differential mRNA splicing and promoter usage on a genome-wide scale. We undertook whole-mRNA sequencing of samples from the human hippocampus and cerebellum. A bioinformatic analysis revealed distinct expression patterns of genes related to the molecular physiology of neurons and glial cells. Upregulated genes in hippocampal tissue included serpin peptidase inhibitor, clade A (SERPINA3), lymphocyte antigen 6 complex, locus H (LY6H) and transthyretin (TTR). In cerebellum, the cerebellin 3 precursor (CLBN3) and Zic family member 4 (ZIC4) genes were significantly upregulated. These changes were validated in independent donor samples by qRT-PCR. The hippocampus and the cerebellum showed striking differences in splicing patterns and promoter usage. A notable example of this was the gene for NGFI-A binding protein 2 (NAB2), which displayed tissue-specific isoforms which may affect its function as a transcriptional repressor

    Molecular phenotyping of telomerized human bone marrow skeletal stem cells reveals a genetic program of enhanced proliferation and maintenance of differentiation responses

    No full text
    Long-term in vitro expansion of bone marrow stromal (skeletal) stem cells (also known as human mesenchymal stem cells [hMSC]) is associated with replicative senescence and impaired functions. We have previously reported that telomerization of hMSC through hTERT overexpression led to bypassing a replicative senescence phenotype and improved in vitro and in vivo functions. However, the molecular consequence of telomerization is poorly characterized. Thus, we compared the molecular phenotype of a well-studied telomerized hMSC (hMSC-TERT) cell line with primary hMSC. At a cellular level, both cell populations exhibited strong concordance for the known hMSC CD markers, similar responses to osteoblast (OB) differentiation induction, and formed heterotopic bone in vivo. Overall gene expression was highly correlated between both cell types with an average Pearson's correlation coefficient (R) between the gene expression of all primary hMSC and all hMSC-TERT samples of 0.95 (range 0.93-0.96). Quantitative analysis of gene expression of CD markers, OB cell markers, and transcription factors (TF) showed a high degree of similarity between the two cell populations (72%, 77%, and 81%, respectively). The hMSC-TERT population was enriched mainly for genes associated with cell cycle and cell cycle signaling when compared with primary hMSC. Other enrichment was observed for genes involved in cell adhesion and skeletal system development and immune response pathways. Interestingly, hMSC-TERT shared a telomerization signature with upregulation of cancer/testis antigens, MAGE, and PAGE genes. Our data demonstrate that the enhanced biological characteristics of hMSC after telomerization are mainly due to enhanced expression of cell proliferation genes, whereas gene expression responses to differentiation are maintained. © 2018 The Authors. Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research

    Next generation sequence analysis of the transcriptome of Sydney rock oysters (Saccostrea glomerata) exposed to a range of environmental stressors

    No full text
    Sydney rock oysters (Saccostrea glomerata) were exposed to environmental stressors at contaminated field sites or in a controlled laboratory setting. RNA seq transcriptome data were generated for the gill and digestive gland using Roche's 454 pyrosequencing technology. 28,685 contigs were de novo assembled which encoded 11,671 different protein products. The data will act as a reference for future studies in ecology, immunology and environmental toxicology.3 page(s

    Molecular characterisation of stromal populations derived from human embryonic stem cells: Similarities to immortalised bone marrow derived stromal stem cells

    Get PDF
    Human bone marrow-derived stromal (skeletal) stem cells (BM-hMSC) are being employed in an increasing number of clinical trials for tissue regeneration. A limiting factor for their clinical use is the inability to obtain sufficient cell numbers. Human embryonic stem cells (hESC) can provide an unlimited source of clinical grade cells for therapy. We have generated MSC-like cells from hESC (called here hESC-stromal) that exhibit surface markers and differentiate to osteoblasts and adipocytes, similar to BM-hMSC. In the present study, we used microarray analysis to compare the molecular phenotype of hESC-stromal and immortalised BM-hMSC cells (hMSC-TERT). Of the 7379 genes expressed above baseline, only 9.3% of genes were differentially expressed between undifferentiated hESC-stromal and BM-hMSC. Following ex vivo osteoblast induction, 665 and 695 genes exhibited ≥2-fold change (FC) in hESC-stromal and BM-hMSC, respectively with 172 genes common to both cell types. Functional annotation of significantly changing genes revealed similarities in gene ontology between the two cell types. Interestingly, genes in categories of cell adhesion/motility and epithelial–mesenchymal transition (EMT) were highly enriched in hESC-stromal whereas genes associated with cell cycle processes were enriched in hMSC-TERT. This data suggests that while hESC-stromal cells exhibit a similar molecular phenotype to hMSC-TERT, differences exist that can be explained by ontological differences between these two cell types. hESC-stromal cells can thus be considered as a possible alternative candidate cells for hMSC, to be employed in regenerative medicine protocols
    corecore